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Abstract 

In searching appropriate candidates of magnetic semiconductors compatible with mainstream Si 

technology for future spintronic devices, extensive attention has been focused on Mn-doped Ge 

magnetic semiconductors. Up to now, lack of reliable methods to obtain high-quality MnGe 

nanostructures with a desired shape and a good controllability has been a barrier to make these materials 

practically applicable for spintronic devices. Here, we report, for the first time, an innovative growth 
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approach to produce self-assembled and coherent magnetic MnGe nanodot arrays with an excellent 

reproducibility. Magnetotransport experiments reveal that the nanodot arrays possess giant magneto-

resistance associated with geometrical effects. The discovery of the MnGe nanodot arrays paves the way 

towards next-generation high-density magnetic memories and spintronic devices with low-power 

dissipation. 

 

Introduction 
 

Ferromagnet/semiconductor hybrid structures attract great attention as artificial materials for 

semiconductor spintronics since they have magnetic and spin-related functions and excellent 

compatibility with semiconductor device structures [1]. By embedding magnetic nanocrystals into 

conventional semiconductors, a unique hybrid system can be developed, allowing not only utilizing the 

charge properties but also the spin of carriers, which immediately promises next-generation non-volatile 

magnetic memories and sensors [2, 3]. On the other hand, spin-injections into the semiconductor can be 

dramatically enhanced via coherent nanostructures, which considerably reduce undesired spin 

scatterings [4]. Although magnetic hybrid systems, such as MnAs/GaAs, have been extensively studied 

over several decades, the control (over the spatial location, shape and geometrical configuration) of the 

magnetic nanostructures (for instance MnAs) still remains a major challenge to further improve the 

performance of the related magnetic tunnel junctions (MTJs) and spin valves [5]. Here, we report a 

general and innovative growth approach to produce coherent and defect-free self-assembled magnetic 

nanodot arrays with an excellent reproducibility in the MnGe system, which reveals a geometry-

enhanced giant and positive magnetoresistance (MR). The discovery of the controllable MnGe nanodots 

with excellent magnetotransport property paves the way towards future magnetoelectronic and 

spintronic devices with novel device functionalities and low power dissipation. Remarkably, this 

innovative method can be possibly extended to other similar systems, such as (Ga,Mn)As, (Ga,Mn)N [2], 
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and (Zn,Cr)Te [2, 3]. 

Magnetic semiconductors, making use of both the charge and the spin of electrons, have been studied 

extensively in the past few years because of their promising applications in spintronic devices [1-11]. 

Examples of such devices include ferromagnetic heterojunction bipolar transistors, MTJs, magnetically 

tunable resonant tunneling diodes, magneto-optical modulators, and spin field effect transistors (Spin 

FETs) [12]. However, the realization of these devices relies significantly on the ability to coherently 

integrate ferromagnetic materials with semiconductors and effectively control the shape or/and 

geometrical configuration of the integrated magnetic semiconductors, avoiding undesired spin 

scatterings, which is extremely crucial for the injection and detection of spin-polarized currents [1, 4, 12, 

13]. In pursuit of coherent magnetic/semiconductor systems, previous efforts were predominately 

devoted to the developments of hybrid ferromagnet/semiconductors, in which epitaxial ferromagnet 

layers grown on lattice matched semiconductors are desirable to reduce detrimental spin scatterings [1, 

4, 12, 13]. As a consequence, a hexagonal (H)-structured MnAs ferromagnet, epitaxially grown on or 

embedded into the zinc-blende (ZB)-structured GaAs, becomes a promising candidate for spin injection 

devices. Unfortunately, the difficulty to fabricate a coherent MnAs-based MTJ makes it a challenging 

task to probe spin injection [13] and also the dislocations or distorted lattices at the H-MnAs/ZB-GaAs 

interfaces would inevitably degrade the spin-polarization [13, 14]. To overcome these problems, a 

feasible solution is to find a coherent MnAs/GaAs system where the lattices of ZB-MnAs nanocrystals 

match with the ZB-GaAs matrix [15-17]. Indeed, the coherent ZB-MnAs/ZB-GaAs system can be 

technically achieved through spinodal decomposition in Mn-doped GaAs. Interestingly, the magnetic 

and magneto-optical properties of this coherent hybrid ZB-(Ga,Mn)As system are quite different from 

the H-MnAs/ZB-GaAs system and some exciting phenomena have been observed [16, 17]. For instance, 

the Curie temperature (Tc) has been increased from 313 K (H phase) to 360 K (ZB phase) [16] and a 

striking memory effect was observed in the system [17]. However, the coherent ZB-MnAs nanocrystals 

produced by the spinodal decomposition in ZB-(Ga,Mn)As are difficult to control their locations, shapes 
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and geometrical configurations, which has been a major barrier to integrate these hybrid materials in 

order to make use of their full potentials in spintronic applications and to discover new collective 

properties from these unique systems [15-17]. 

Similar to the (Ga,Mn)As system, coherent dopant-rich nanocrystals induced by the spinodal 

decomposition also exist in most magnetic impurity-doped semiconductor systems, such as MnGe [18-

24], (Ga,Mn)N [2], and (Zn,Cr)Te [3]. The common disadvantage of these current available coherent 

magnetic nanocrystals, as mentioned above, is their random distribution, in terms of size and location, 

and low controllability. For instance, in the MnGe system, although Jamet et al. [19] recently employed 

the spinodal decomposition method to fabricate self-organized MnGe nanocolumns with high 

ferromagnetism, the growth window is narrow and difficult to reproduce. On the other hand, strain 

fields generated at strained interfaces of two materials with different lattice parameters have been 

successfully employed to grow quantum dots for several decades [9, 10, 25-28], underpinning a 

promising development of high-density three dimensional memories and spatial light modulators for 

advanced photonic applications [2]. Here, we uniquely combine these two growth strengths (spinodal 

decomposition and strain field) and, for the first time, demonstrate a general and well-repeatable method 

to produce coherent and self-organized magnetic nanostructures with superior magnetoresistance in the 

MnGe system. More strikingly, this innovative method can be easily employed to other diluted magnetic 

semiconductor systems with spinodal decomposition [2], such as (Ga,Mn)As, (Ga,Mn)N, and (Zn,Cr)Te. 

Indeed, it is expected to be applicable in any systems where the spinodal decomposition exists. 

Experimental details 

Growth 

A “superlattice” growth approach was carried out by alternating the growth of Mn-doped Ge and 

undoped Ge thin layers with a Perkin Elmer molecular beam epitaxy. High-purity Ge (99.9999%) and 

Mn (99.99%) sources were evaporated by conventional high-temperature effusion cells. During the 

growth, a Ge growth rate of 0.2 Å/s with an adjustable Mn flux as the dopant source was used. The 
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designated structure is schematically shown in Figure 1 and Figure S1 in Additional file 1. First of all, a 

high-quality single-crystalline Ge buffer layer was deposited at 250°C with a thickness of ca. 60 nm. 

The surface of the buffer layer was monitored by the reflection high-energy electron diffraction 

(RHEED) technique and found to be atomic flat evidenced by the streaky RHEED patterns. The growth 

temperature was then decreased to 70°C for the subsequent “superlattice” growth. Ten periods of Ge and 

MnGe layers were grown for each case. Different growth parameters (including nominal thicknesses of 

Ge and MnGe layers, the Mn concentrations and the growth temperatures) were employed in order to 

obtain MnGe nanodot arrays. It is worthwhile noting that the quality of the buffer layer is crucial for the 

subsequent low-temperature growth of the MnGe film. 

Structural Characterizations 

The high-resolution transmission electron microscopy (TEM) and scanning TEM (STEM) experiments 

were performed on a FEI Tecnai F20 (S)TEM operating at 200 kV. The digital images were recorded by 

a Gatan® 2k × 2k CCD camera. All the TEM and STEM images were taken in standard conditions. 

However, it should be noted that the MnGe nanodots appear dark contrast in the bright-field TEM mode 

(Figure 2a, c, d) which is different from the case in the low-angle dark-field STEM mode (Figure 2b, e) 

where the MnGe show white contrast due to different imaging systems. 

Property measurements 

A physical property measurement system and superconducting quantum interference device was used to 

measure the magnetotransport and magnetic properties, respectively. Both equipments were 

manufactured from Quantum Design. 

 

Results and discussions 

Structural properties 

Practically, we employed a concept of stacked MnGe nanodots by alternatively growing MnGe and Ge 
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layers with designated thicknesses (nominal 3-nm-thick MnGe and 11-nm-thick Ge), as shown in Figure 

1a. It is well known that Mn doping in Ge induces compressive strain because of its larger atomic size 

[29], assuming that no lattice defects are generated during the doping process, i.e., lattice coherence. 

Mn-rich MnGe nanodots induced by the spinodal decomposition should be strained if the lattice 

coherence between the nanodots and the matrix remains. Once the strained nanodots are developed, a 

thin Ge spacer layer, subsequently deposited with an optimized thickness, will retain the perfect lattice 

coherence with the underneath nanodots. This enables the existing nanodots to exert strain on the Ge 

spacer layer and produce “strained spots”, which, in turn, become preferred nucleation sites for 

successive nanodots. Eventually, multilayered and vertically aligned MnGe nanodot arrays can be 

produced, similar to the scenarios of stacked InAs/GaAs [27, 28] and Ge/Si [30] quantum dots. Indeed, 

by employing this innovative approach, we achieved the growth of coherent self-assembled MnGe 

nanodot arrays with an estimated density of 1011 cm−2 to approximately 1012 cm−2 within each MnGe 

layer, as schematically demonstrated in Figure 1b. In this study, ten periods of MnGe nanodots were 

epitaxially grown on Ge (100) and GaAs (100) substrates by a Perkin-Elmer solid source molecular 

beam epitaxy (MBE) system. A detailed description of growth method and parameters are presented in 

the Methods part (also refer to Figure S1 in Additional file 1). TEM and energy dispersive spectroscopy 

(EDS) in the STEM mode were performed to understand the nanostructures and compositional 

variations of the resulting thin films. Figure 2a and c are typical plane-view and cross-sectional TEM 

images and show the general morphology of the MnGe nanostructures, viewed along the <100> and 

<011> directions, respectively. A high-density of dark nanodots can be clearly seen in both cases. Based 

on the magnified cross-sectional image shown in Figure 2d, the nanodot arrays are clearly observed with 

ten stacks along the growth direction although not perfectly vertical (see Figure S2 in Additional file 1 

for more images). In order to determine the composition of the dark dots, EDS analyses in the STEM 

mode were carried out and typical plane-view and cross-sectional STEM images are shown in Figure 2b 

and e, respectively. Figure 2f is the EDS result taken from a typical dot and shows clearly the Mn and 
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Ge peaks. Figure 2g and h present EDS line scans using the Mn K peak for the dots marked by G and H 

in Figure 2b and e, respectively, indicating high concentrations of Mn inside the dots. Taking all these 

comprehensive TEM results into account, it is concluded that the nanodots are Mn-rich when compared 

with the surrounding matrix. Figure 3a shows a high magnification TEM image taken from a thin area, 

where several aligned MnGe nanodots can be evidently observed. The distance between two vertically 

adjacent nanodots (along the growth direction) is measured to be 14 ± 1 nm, well matched with the 

designed period of a 11-nm-thick Ge spacer layer and a 3-nm-thick MnGe layer. It should be noted that 

these nanodots are uniform in size with an elliptical shape (a dimension of 5.5 ± 0.5 nm and 8 ± 0.3 nm 

in the horizontal and vertical directions, respectively), as demonstrated in Figure 3a. Since the nominal 

thickness of the MnGe layer (3 nm) is far less than the dot vertical dimension (8 nm), it suggests that, 

during the growth of the MnGe thin film, Mn not only diffuses laterally (to form dots), but also migrates 

vertically into the adjacent Ge spacer layers, primarily in the proximity of the dot regions, resulting in 

ellipse-shaped nanodots. 

To determine structural characteristics of the MnGe nanodots at the atomic level, high-resolution TEM 

(HRTEM) was used and an example is shown in Figure 3b, where the HRTEM image was taken from 

the dashed rectangle area in Figure 3a. Interestingly, a careful examination of the HRTEM image shows 

that the MnGe nanodots have an identical single-crystalline structure to the Ge matrix (the diamond 

structure) with no observed lattice defects, consistent with other reports (with irregular shape of MnGe 

clusters) [18, 19]. As mentioned above, this type of MnGe nanodots is lattice coherent. This is 

substantially different from other Mn-rich precipitates such as hexagonal Mn5Ge3 [31] and Mn11Ge8 [32] 

which have a different phase, other than a diamond structure as Ge matrix. This is also verified by our 

selected area diffraction patterns (refer to Figure S2 in Additional file 1), where no extra diffraction 

spots or diffused ring(s) can be observed. To further determine the possible lattice distortion of the 

MnGe nanodots with respect to the Ge matrix, the inversed Fourier transform (Bragg filtering) 

technique [19] was used where two sets of nano atomic planes are shown in Figure 3c and d. As can be 
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observed, the interfaces between the MnGe nanodots (the dark areas) and the Ge matrix are perfectly 

coherent without noticeable lattice distortion or bending of the atomic planes. In fact, using the }111{  

atomic spacings away the Ge matrix as a reference, the MnGe spacing of }111{  atomic planes are 

determined to be identical to that of the Ge matrix. A quantitative EDS analysis suggests that the dots 

have a Mn concentration as high as 11% (Figure 2f), which can be further adjusted by altering the Mn 

flux during the growth. The high Mn doping is comparable to the reported Mn concentration of 15% in 

Ref. [18]. Since the atomic radius of Mn (140 pm) is larger than that of Ge (125 pm) [29], it is expected 

that these Mn-rich dots experience a compressive stress caused by the surrounding Mn-poor Ge matrix. 

In fact, such a stored stress can be visualized from the strong contrast of the nanodots shown in Figure 3. 

Therefore, the successful vertical alignment of stacked nanodots can be attributed to the strain fields 

induced by the underlying Ge spacer layers, which is consistent with the growth mechanism of stacked 

quantum dot systems. 

Magnetic properties 

Since the nanodot array samples are ferromagnetic below 300 K (Figure S3 in Additional file 1), it is of 

great interest to study their magnetotransport properties. To do this, the samples were then fabricated 

into standard Hall bars with a typical channel width of 500 µm. For all measurements, the external 

magnetic field (H) was applied perpendicular to the sample surface. In order to completely avoid the 

substrate (Ge) conducting effect (Figure S4 in Additional file 1) [33], we have also successfully grown 

the same nanostructures on GaAs substrates under the same growth conditions as GaAs has the almost 

identical lattice parameter as Ge.  

The resistivity measurements were carried out to probe the carrier transport under different temperatures. 

It was found that the temperature-dependent resistivities rapidly increase with decreasing temperature 

due to the carrier freeze-out effect at low temperatures, which is typically observed in doped 

semiconductors [34]. Considering the embedded MnGe nanodots, the rise in resistivities at low 

temperatures also suggests a strong localization of carriers, which takes place at the Mn sites and/or at 
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the MnGe/Ge interfaces, similar to the scenario of MnSb clusters in InMnSb crystals [8]. The 

temperature-dependent resistivity can be generally described by [35] 

1/0
0( ) exp[( ) ]

T
T

T

αρ ρ=
,         (1) 

where ( )Tρ is the temperature-dependent resistivity; 0ρ  and 0T denote material parameters, α is a 

dimensionality parameter: 2α = for one-dimensional (1D), 3α =  for 2D, and 4α = for 3D systems. In 

order to reveal the carrier transport mechanisms at different temperature regions, fittings were 

performed in the plots of lnρ as a function of T-α (Figure 4a). The best fittings were found when α equals 

to 1 and 4 in the high-temperature and low-temperature regions, respectively, corresponding to the 

carrier transport via the band conduction [36] (thermal activation of acceptors) and the 3D Mott’s 

variable range hopping processes [35]. According to the fitting results to Equation 1, the obtained 

nanodot arrays show a dominated hopping process below 10 K. At such a low temperature, the majority 

of free holes are recaptured by the acceptors. As a result, the free-hole band conduction becomes less 

important and hole hopping directly between acceptors in the impurity band contributes mostly to the 

conductivity [36]. Above 100 K, the conduction is dominated by the thermal activation of the holes (the 

band conduction). A thermal activation energy (
a

E ) of 15 meV can be obtained from Equation 1 with 

1α =  and 0a B
E T K= , where 

B
K  is the Boltzmann constant. This activation energy does not correspond 

to any known acceptor energy levels due to Mn doping in Ge, consistent with results shown in reference 

[20]. 

To explore practical applications for our extraordinary nanodot arrays, the MR measurements were 

performed from 2 to 300 K with an external magnetic field up to 10 Tesla. Figure 4b shows the plots of 

temperature-dependent MR at given magnetic fields (5 and 10 Tesla) for the nanodot arrays. Under a 

strong magnetic field, the MR in the region of variable range-hopping conduction can be described by 

[37, 38] 
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2 1/3
MR( ) exp[ ] 1

( )
C

H
Tλ

= − ,         (2) 

where the magnetic length λ  equals to 1/2( / )c eHh  and C is a field and temperature independent 

constant. Note that the Equation 2 is only valid in a strong-field limit [37-39]. The inset in Figure 4b 

shows the best fitting results, in which a linear behavior of MR versus T
−1/3 is obtained, further 

confirming the hopping conduction mechanisms (T ≤ 8 K). Note that the absolute values of MRs were 

used for the fitting purpose. These fitting results are reasonably close to the obtained hopping regions 

determined from the zero-magnetic-field resistivity measurements (T ≤ 10 K, Figure 4a). 

It is striking to observe that the coherent MnGe nanodot arrays present a large and positive MR up to 

900% at 2 K (Figure 4c). Traditionally, the positive MR is attributed to the Lorentz force in the 

semiconductor matrix, which deflects the carriers during the transport process [39]. The resulting MR is 

positive and proportional to 2( )Hµ  under low magnetic fields [19] (H ≤ 1 Tesla in our case) where µ is 

the semiconductor mobility (units m2
V

−1
S

−1 or T−1) and H is the magnetic field. However, with a simple 

calculation, the estimated orbital MR is too small to explain the large MR observed from the nanodot 

arrays. Instead, we anticipate that besides the effect of orbital MR, the high-density magnetic nanodots 

could significantly contribute to the large MR ratios due to an enhanced geometric MR effect, from 

which the current path may be significantly deflected when external magnetic fields were applied to the 

magnetic nanostructures [19, 40, 41]. To elucidate the underlying physics of the geometrical effect, we 

consider a thin Hall bar geometry with a measurement current applied in the x-direction, a Hall voltage 

in the y direction, z direction normal to the sample surface, and an external magnetic field H parallel to z. 

For semiconductors, the current density and the total electric field can be described by j Eσ= , where 

the magneto-conductivity tensor is given by [40, 41] 
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2

2 2

2

2 2

0
1 1

( ) 0
1 1

0 0

H

σ σβ

β β

σβ σ
σ

β β

σ

 
 
+ + 

 −
=  

+ + 
 
  
  .         (3) 

Here, Hβ µ= . At zero magnetic field, β  vanishes. The conductivity tensor is diagonal when lacking 

of the magnetic field; and the current density can be simply described by j Eσ= . Since the electric field 

is normal to the surface of a metallic inclusion and j || σE , the current flowing through the material is 

concentrated into the metallic region which behaves like a “short circuit” (Figure S5 in Additional file 1) 

[42]. As a result, the inclusion of metallic clusters can lead to a higher conduction than that of a 

homogeneous semiconductor [19, 40, 41]. However, at high magnetic fields ( 1β >> ), the off-diagonal 

terms of ( )Hσ dominate. Equivalently, the Hall angle between j and E approaches 90° ( )j E⊥ ; and the 

current becomes tangent to the nanodots. This further indicates that the current is deflected to flow 

around the nanodots, resembling an “open circuit” state (Figure S5b in Additional file 1) [42]. The 

transition from the “short circuit” at the zero field to the “open circuit” at high fields produces an 

increase of resistance, i.e., a positive geometrically-enhanced MR [41]. The above explanation has been 

successfully applied to several material systems, including Au/InSb [41] and MnAs/MnGaAs [42]. 

Similarly, the geometrically-enhanced MR (ca. 200% at 10 Tesla, 300 K) was identified in MnGe2 

nanostructures with a high Mn concentration of approximately 33% [19]. 

 

Conclusion 

In conclusion, we have successfully developed a novel approach to fabricate extraordinarily coherent 

and self-organized MnGe nanodot arrays embedded in the Ge and GaAs matrixes by low-temperature 

MBE. A high yield of such aligned nanodot arrays was confirmed on different substrates, showing an 

ideal controllability and reproducibility. More importantly, giant positive magneto-resistances were 
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obtained due to the geometrically-enhanced effect. We anticipate that our studies will advance the 

development of MnGe magnetic semiconductors and/or other similar systems. The obtained coherent 

and self-assembled nanostructures could be potentially used as the building blocks in the high-density 

magnetic memories, sensors and spintronic devices, enabling a new generation of low-dissipation 

magnetoelectronic devices. 
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Figure 1. Schematic drawings of MnGe nanodot arrays. (a) Controlled growth approach of inter-

stacked Ge (green) and MnGe (bright) layers with a sequence from the bottom: substrate (Ge or 

GaAs)/Ge buffer layer/four (MnGe/Ge) layers. (b) MnGe nanodot arrays. 

Figure 2. Transmission electron microscopy (TEM), scanning TEM and energy dispersive X-ray 

spectroscopy (EDS) results of the multilayer MnGe nanodots. (a) A typical low-magnification 

plane-view bright-field TEM image showing MnGe nanodots (dark spots). (b) A plane-view low-angle 

dark-field STEM image showing the MnGe nanodots (white spots). (c) A low-magnification cross-

sectional bright-field TEM image showing the obtained MnGe nanodot array in a large area. (d) A 

higher-magnification cross-sectional TEM image and (e) a cross-section STEM image, both showing 

the MnGe nanodot arrays. (f) A EDS profile showing the Mn and Ge peaks. (g, h) EDS line-scan 

profiles of the marked line in (b) and (e) using Mn K peak, respectively, confirming nanodots being Mn 

rich. All TEM images are taken from the same sample. 

Figure 3. High resolution transmission electron microscopy results (HRTEM) of the MnGe 

nanodots.. (a) A high-magnification TEM image showing several aligned MnGe nanodots. (b) The 

HRTEM images of the MnGe nanodots (the selected area in (a)) showing a perfect diamond structure as 

the Ge matrix. (c, d) Bragg filterings of ±(111) (c) and ±(111) (d) reflections, respectively; where no 

dislocation or distortion was observed. The dark contrast of the nanodots indicates the existence of 



 

16

significant strain. 

Figure 4. Magnetotransport measurements for the MnGe nanodot arrays. (a) the temperature-

dependent resistivity (lnρ versus T−1) and the inset displays the plot of lnρ versus T−1/4. (b) 

Temperature-dependent MR under fixed magnetic fields of 5 and 10 Tesla and the inset showing the 

plot of ln(MR) vs T−1/3. (c) Positive MRs at different temperatures and different magnetic fields. 
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