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Abstract 

Scanning tunneling spectroscopic studies of Bi2Se3 epitaxial films on Si (111) substrates reveal highly localized unitary impurity 
resonances associated with non-magnetic quantum impurities. The strength of the resonances depends on the energy difference between 
the Fermi level (EF) and the Dirac point (ED) and diverges as EF approaches ED. The Dirac-cone surface state of the host recovers within 

 2Å spatial distance from impurities, suggesting robust topological protection of the surface state of topological insulators against high-
density impurities that preserve time reversal symmetry. 
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An exciting development in modern condensed matter 

physics is the beautiful manifestation of topological field 
theories in strongly correlated electronic systems, where 
topological field theories [1] are shown to provide a 
classification of order due to macroscopic entanglement that is 
independent of symmetry breaking [2]. The fractional 
quantum Hall (FQH) state is the first known example of such a 
quantum state that exhibits no spontaneous broken symmetry 
and has properties depending only on its topology rather than 
geometry [2]. Recently, a new class of time-reversal symmetry 
protected topological states known as the quantum spin Hall 
(QSH) states or the topological insulators (TI) has emerged 
and stimulated intense research activities [3,4].  

One of the novel properties associated with the TI is the 
presence of a Dirac spectrum of chiral low-energy excitations, 
which is a salient feature of the Dirac materials that exploits 
the mapping of electronic band structures and an embedded 
spin or pseudo-spin degree of freedom onto the relativistic 
Dirac equation [3–9]. These materials, including graphene [9] 
and the surface state (SS) of three dimensional (3D) strong 
topological insulators (STI) [3–8], have emerged as a new 
paradigm in condensed matter for investigating the topological 
phases of massless and massive Dirac fermions. In the case of 
3D-STI, an odd number of massless Dirac cones in their SS is 
ensured by the Z2 topological invariant of the fully gapped 
bulk [3–8]. Backscattering of Dirac fermions is suppressed 
due to topological protection that preserves the Dirac 
dispersion relation for any time-reversal invariant perturbation 
[3,4]. Thus, 3D-STI are promising materials for applications in 

areas of spintronics [3,4,10] and topological quantum 
computation [3,4,11] if their SS exhibit sufficient stability to 
impurities [12,13].  

While direct backscattering is prohibited in both the SS of 
3D-STI and in graphene, sharp resonances are not excluded 
because Dirac fermions with a finite parallel momentum may 
be confined by potential barriers [9]. In fact, theoretical 
calculations for Dirac fermions in the presence of non-
interacting impurities have predicted the occurrence of strong 
impurity resonances [12, 13]. Nonetheless, no direct empirical 
observation of strong resonances has been demonstrated to 
date despite numerous reports of spectral evidences for 
quasiparticle interferences associated with impurity or step-
edge induced scattering [14–16]. In this letter we report direct 
scanning tunneling spectroscopic (STS) observation of 
impurity resonances in a 3D-STI system, Bi2Se3. We find that 
the strength of non-magnetic impurity resonances appears 
strongly dependent on the energy difference between the 
Fermi level (EF) and the Dirac point (ED) and diverges as EF 
→ ED. The impurity resonances occur near ED and are 
localized within a small region of a radius r0  2Å so that the 
SS spectra of the host remain undisturbed even for high-
density unitary impurities. These findings suggest that the SS 
of a 3D-STI is topologically well protected against impurities 
that preserve time reversal symmetry. Moreover, the absence 
of strong impurity resonances in other spectroscopic studies 
[14–17] may be attributed to the large energy difference 
between EF and ED that led to substantial screening of the 
impurity states. 
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The samples investigated in this work are epitaxial Bi2Se3 
films grown on Si(111) by molecular beam epitaxy (MBE). 
Details of the growth process have been described elsewhere 
[18]. Transmission electron microscopy (TEM) on these films 
exhibited perfect triangular lattice structures, and ARPES 
(angle resolved photoemission spectroscopy) studies revealed 
a single Dirac cone [18]. Figure 1(a) shows an atomic force 
microscope (AFM) image of an as-grown Bi2Se3 epitaxial film 
with an average thickness of 44 quintuple layers (QLs). The 
film surface consists of large triangle-shaped flat terraces, 
reflecting the hexagonal crystalline structure inside the (0001) 
plane. The height of each terrace is  0.95 nm, corresponding 
to a single QL thickness. The typical lateral dimension of the 
top layer ranges from 150 to 350 nm, and the width of each 
subsequent terrace is 70  90 nm.  
 
 
 
 
 
 
 
Fig. 1. Characteristics of MBE-grown Bi2Se3 epitaxial films on 
Si(111): (a) AFM image of a sample with a mean thickness of 44  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Characteristics of MBE-grown Bi2Se3 epitaxial films on 
Si(111): (a) AFM image of a sample with a mean thickness of 44 
QLs, showing triangle-shaped flat terraces. (b) Main panel: 
Comparison of the typical tunneling conductance spectra of two 
Bi2Se3 films of 60-QL and 7-QL thicknesses. The Dirac point ED 
shifts away from the Fermi level EF = 0 with decreasing thicknesses. 
Inset: A representative tunneling spectrum for a 3-QL sample, 
showing opening of an energy gap around EF. (c) Histogram of ED in 
the 60-QL sample. (d) Histogram of ED in the 7-QL sample 
comparable results.  
 

After MBE-growth, samples were transferred to the 
cryogenic probe of a homemade scanning tunneling 
microscope (STM). The sealed STM assembly was evacuated 
and cooled to either 6 K or 77 K in ultra-high vacuum. Both 
spatially resolved topography and normalized tunneling 
conductance (dI/dV)/(I/V) vs. energy (E = eV) spectroscopy 
were acquired pixel-by-pixel simultaneously, with tunneling 
currents perpendicular to the sample surface, and the typical 
junction resistance was  1 G. Detailed survey of the 
surface topography and tunneling conductance spectra was 
carried out over typically (8×8) nm2 areas, and each area was 
subdivided into (128×128) pixels.  

Generally the normalized tunneling conductance spectra 
in our STS studies were found consistent throughout a flat 
area. Representative point spectra for the 60-QL and 7-QL 
samples are given in the main panel of Fig. 1(b), and the 
ranges of the Dirac energy for all areas investigated are ED = 
(−73±38) meV and ED = (−100±25) meV, respectively, as 
summarized by the histograms of the Dirac energies shown in 
Figs. 1(c) and 1(d). In contrast, a typical spectrum for the 3-
QL sample (inset of Fig. 1(b)) reveals apparent opening of an 
energy gap (  0.4 eV) around EF = 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. (Color online) (a) Atomically resolved (dI/dV) map of a 60-
QL sample at E = −89 meV. (b) Atomically resolved (dI/dV) map of 
a 7-QL sample at E = −130 meV. (c) Fourier transformation (FT) of 
the (dI/dV) map for E = −30 meV over the same area shown in (a) for  
the 60-QL sample, showing a circular diffraction ring consistent with 
the SS dispersion relation for Ev < E < Ec where Ev and Ec refer to the 
top of the bulk valence band and the bottom of the bulk conduction 
band, respectively, and (Ec−Ev)  300 meV, and the reciprocal space 
units are given in the convention of (2) over lattice constants. (d) FT 
conductance map for E = −50 meV over the same area shown in (b) 
for the 7-QL sample, showing a circular diffraction ring consistent 
with the SS dispersion relation for Ev < E < Ec. (e) Schematic 
illustration of the energy dispersion relations associated with the bulk 
and surface states of the 3D-STI Bi2Se3, showing an apparently 
circular Fermi surface for Ev < E < Ec. (f) FT conductance map for E 
= −300 meV over the same area shown in (a) for the 60-QL sample, 
showing clear first-order and weak second-order Bragg diffraction 
spots for E < Ev. (g) FT conductance map for E = −300 meV over the 
same area shown in (b) for the 7-QL sample, showing first-order 
Bragg diffraction spots for E < Ev. (h) Schematic energy dispersion 
relations associated with the bulk and surface states of the 3D-STI 
Bi2Se3, showing dominating bulk contributions for E < Ev. 

 
Despite the relatively consistent tunneling spectra for 

most areas in view, we note the presence of a few atomic 
impurities, as manifested by the localized high conductance 
spots in Fig. 2(a) for the 60-QL sample and in Fig. 2(b) for the 
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7-QL sample. On the other hand, unlike other 3D-STI (e.g., 
Bi2Te3 and Bi1−xSbx) with more complicated Fermi surfaces 
that lead to SS deviating from a perfect Dirac cone as well as 
impurity-induced quasiparticle interferences (QPI) for 
sufficiently high-energy quasiparticles [14–16], the SS of 
Bi2Se3 does not exhibit discernible QPI because the perfect 
single Dirac cone prevents backscattering. Hence, the Fourier 
transformation (FT) of the conductance maps primarily 
exhibited round spots in the center of the FT conductance 
maps and very faint Bragg diffraction spots at low energies 
within the surface state, as shown in Figs. 2(c)-(e). Eventually 
significant Bragg diffraction peaks appear in the reciprocal 
space for energies merged into the bulk state, as manifested in 
Figs. 2(f)-(h) for the FT conductance maps taken at E = −300 
meV on the 60-QL and 7-QL samples, respectively. In 
contrast, QPI with wave-vectors smaller than the reciprocal 
lattice constants were found in samples thinner than 6 QLs 
[21] due to modified SS as the result of wave-function 
overlapping and Rashba-type spin-orbit splitting between the 
top and bottom surfaces of the thin film [19,20]. Given that the 
energy dispersion relation for the 3-QL sample deviates from 
that of a Dirac cone, in the following we focus our studies of 
the impurity resonances only on the 60-QL and 7-QL samples. 

To investigate the spectral evolution associated with the 
presence of these quantum impurities, we show in Figs. 3(a)-
(f) different line-cuts across a (5×8) nm2 constant-bias 
conductance map and the corresponding spectra for the 60-QL 
sample. For a line-cut along an area without impurities as 
exemplified in Fig. 3(a), the tunneling spectra are generally 
consistent everywhere, showing a Dirac energy ED = (−35±10) 
meV slightly below the Fermi level. On the other hand, the 
tunneling spectra directly above quantum impurities reveal 
strong resonant conductance peaks at E  ED. Moreover, these 
resonant peaks are spatially confined to a region of  2Å in 
radius, as shown by the spectra along various line-cuts in Figs. 
3(b)-(d) and further elaborated in Fig. 5(a). These spectral 
characteristics clearly reveal that the SS of the host recovers 
rapidly from impurities. 

Interestingly, for quantum impurities separated by only one 
lattice constant, the spectral characteristics for the inter-
impurity region exhibit strong interferences for energies deep 
into the bulk valence band while the SS spectra have restored 
to that of the host, as exemplified in Figs. 3(e)-(f). These 
findings therefore imply strong topological protection of the 
SS against impurities even in the limit of significant effects on 
the bulk state. For comparison, while similar quantum 
impurities are observed in the 7-QL sample, the intensity of 
the impurity resonances is much reduced, as illustrated in Figs. 
4(a) and 4(b). As discussed later, this weakened impurity 
resonance may be attributed to the larger energy separation 
(EF − ED) ≡ E (see Fig. 1(b) and Fig. 4(c)). 

To better quantify the spatial confinement and energy 
dependence of the impurity resonance, we illustrate in Fig. 
5(a) the spatial dependence (r) of the tunneling conductance 
near one of the isolated impurities in the 60-QL sample. For E 

 ED, we find strong resonance in the tunneling conductance 
over a very narrow spatial range r  ±2Å, as illustrated by the 
solid curve in Fig. 5(a). On the other hand, for E < ED but still 
within the SS, the spectral resonance diminishes rapidly, as 
shown by the curve of black symbols in Fig. 5(a). Similarly, 
no impurity resonance is visible for energies deep into the 
bulk valence band, as exemplified by the (dI/dV)-vs.-r curve 

taken at E = −275 meV (red symbols) in Fig. 5(a). In the case 
of two closely located impurities, we find that the impurity 
resonances at E  ED remains strongly localized spatially 
(solid blue curve in Fig. 5(b)). Moreover, the SS spectrum of 
the small intermediate region between two impurities appears 
to fully recover to that of the host (black symbols in Fig. 5(b)), 
whereas the bulk spectrum (E = −400 meV) for the same 
intermediate region exhibits strong interferences, as 
exemplified by the red symbols in Fig. 5(b) and also in Fig. 
3(e). The rapid recovery of the SS spectrum from impurities 
may be understood as the result of topological protection of 
the SS in Bi2Se3, even in the limit of high-density impurities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. (Color online) Spectral evolution along various line-cuts of a 
(5×8) nm2 area of a 60-QL sample at T = 77 K, where the white 
dotted line in each upper panel represents a line-cut across an 
atomically resolved constant-energy conductance (dI/dV) map, and 
the corresponding (dI/dV)-vs.-E spectra along the line-cut are given in 
the lower panel: (a) Across an impurity-free region; (b) Across a 
single impurity; (c) Across two impurities; (d) Across an isolated 
impurity; (e) Between two closely spaced impurities along the 
horizontal direction; (f) Between two closely spaced impurities along 
the vertical direction. 

 

Similarly, for the 7-QL sample with a larger value of | E |, 
the impurity resonance at E  ED for either an isolated 
impurity or two closely spaced impurities is also highly 
localized, as exemplified in Figs. 5(c)-(d). Moreover, the SS 
spectrum recovers rapidly and the effect of adjacent impurities 
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on the bulk valence band diminishes significantly (Fig. 5(d)) 
relative to that of the 60-QL sample (Fig. 5(b)), probably due 

to stronger screening associated with a larger | E | value in the 
7-QL sample. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. (Color online) Spectral evolution along various line-cuts of a 
(5.1×8.8) nm2 area of a 7-QL sample at T = 77 K: (a) Atomically 
resolved constant-bias conductance map for E = 5 meV; (b) (dI/dV)-
vs.-E spectra along the slanted dotted line in (a) that cuts across two 
point impurities; (c) (dI/dV)-vs.-E spectra along an impurity-free 
region represented by the vertical dashed line in (a).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. (Color online) Spatial distribution and energy dependence of 
the impurity resonances for 60-QL and 7-QL samples: (a) (dI/dV) vs. 
spatial distance (r) spectrum of a 60-QL sample from the center of an 
isolated impurity for E  ED (blue solid curve), < ED (within the SS, 
black solid circles) and  ED (in the bulk valence band, red open 
diamonds). (b) (dI/dV)-vs.-r spectrum of a 60-QL sample from the 
center of two adjacent impurities for E  ED (blue solid curve), < ED 
(black solid circles) and  ED (red open diamonds). (c) (dI/dV)-vs.-r 
spectrum of a 7-QL sample from the center of an isolated impurity 
for E  ED (blue solid curve), < ED (black solid circles) and  ED 
(red open diamonds). All spectra reveal slight conductance 
modulations associated with the underlying atomic lattice structure. 
(d) (dI/dV)-vs.-r spectrum of the 7-QL sample from the center of two 
adjacent impurities for E  ED (blue solid curve), < ED (black solid 
circles) and E  ED (red open diamonds).  
 

To understand the quantitative dependence of impurity 
resonances on E , we follow the Keldysh Green function 

formalism detailed in Ref. [13] for tunneling conductance 
above a non-magnetic impurity in graphene, which may be 
applied to the SS tunneling conductance gimp in 3D-STI by 
reducing the conductance contributions from two sublattices in 
graphene to one Dirac cone in Bi2Se3. Specifically, the 
Hamiltonian for the low energy Dirac quasiparticles of 
topological insulators may be modeled by considering the 
following contributions [13]: 
 
              (1) 
 
where HTI = (σ  p) is the Dirac Hamiltonian for the SS of a 
3D-STI (with σ and p denoting the spin and momentum 
operators, respectively), Himp is the impurity Hamiltonian, 
Htip is the Hamiltonian for the STM tip, and the Hamiltonians 
HTI−imp, Htip−TI and Htip−imp describe hopping between TI and 
the impurity electrons, between TI and the STM tip electrons, 
and the STM tip electrons and the impurity, respectively [13]. 
Given the Hamiltonian H in Eq. (1), the time (t) dependent 
tunneling current I(t) may be expressed by the formula: 
 
              (2) 
 
where Ntip denotes the number operator of the tip electrons. 
Assuming non-interacting Dirac fermions and non-interacting 
impurities, and taking a cutoff energy  beyond which the 
bulk states dominate, the gimp vs. ω ≡ (E/) spectrum may be 
derived from Eq. (1) and Eq. (2) and by using the Keldysh 
Green functions [13]. Thus, at T = 0 the tunneling conductance 
gimp(ω) above a nonmagnetic impurity in the single Dirac cone 
system Bi2Si3 becomes [13]: 
 
 

 
       
 
        (3) 

 
where ρtip is the density of states of the STM tip, and imp(E) is 
the self-energy of impurity. The quantities B(E), q(E) and χ(E) 
in Eq. (3) are related to the unperturbed retarded Green 
function of Dirac fermions        via the following relations 
[13]: 
 
 
 
 
 
 
 
 
 
             (4) 
 
 
where σ denotes the spin index [13]. In Eqs. (3) and (4) the 
parameters U 

0, V 
0 and W 

0 correspond to the interaction 
energies between the STM tip and the host TI, between the 
impurity and the TI, and between the STM tip and the 
impurity, respectively [13]. Introducing the dimensionless 
parameters δ ≡ ω + (F − D), F ≡ (EF/), D ≡ (ED/), u0 ≡ 
(U 

0/), v 
0 ≡ (V 

0/), w 
0 ≡ (W 

0/), and ωimp ≡ (imp − ED)/, 
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and imposing the condition |δ| < 1 so that the energy range of 
impurity resonance spectra is restricted to that of the SS, we 
simplify Eqs. (3) and (4) into the following expressions: 
 
             (5) 
 
 
where q and χ are given by 
 
 
 
 
         .         (6) 
 
 
In the limit of |δ| → 0 and for unitary impurities where ωimp → 
0, gimp diverges with an asymptotic form [|δ|(ln|δ|)2]−1. 

Using Eqs. (5) and (6), we illustrate the impurity resonant 

spectra for ( E /) = 0, 0.1 and 0.3 in Fig. 6(a), where we have 
taken ωimp = 0 and T = 0. For comparison, we illustrate in Fig. 
6(b) two empirical impurity resonant spectra taken from the 
60-QL and 7-QL samples together with their respective 
theoretical simulations in Fig. 6(c), where thermal smearing at 
T = 77 K has been included in the theoretical curves. We find 
that the theoretical peak positions are consistent with ωimp → 0 
(with ωimp = 0 for the 60-QL sample and ωimp = 0.002 for the 
7-QL sample) so that the impurity resonant energy imp for 
both samples nearly coincides with the corresponding Dirac 
energy ED. This finding suggests that the impurity resonances 
for both samples are in the unitary limit [12], where the 
impurity strength Uimp for imp → ED diverges via the relation 
(imp − ED)  5 sgn(Uimp)/(|Uimp| ln|Uimp|). We further note that 
empirically the impurity resonant peak positions for both 
samples also nearly coincide with their respective Dirac 
energies obtained from regions without impurities.  

While qualitative and semi-quantitative understanding can 
be achieved with the analysis outlined above, we find that the 
linewidths of the experimental data are generally broader than 
those of the theoretical curves, and the ratio of the relative 
peak heights also differs between theory and experiments. 
These quantitative discrepancies suggest that the simple non-
interacting Dirac fermion model may not completely account 
for our experimental findings. 

More specifically, the aforementioned theoretical analysis 
of our experimental spectra has the following physical 
implications. First, the strong dependence of impurity 

resonances on ( E /) is a direct consequence of the linear 
dispersion relation of the surface Dirac fermions, which gives 
rise to an approximate logarithmic divergence in the limit of 

EF → ED [12,13]. In contrast, for samples with large | E | due 
to excess doping, the spectral weight of impurity resonances 
may become too small to resolve directly with STS studies 
[17]. Second, the occurrence of strong resonance peaks at ED 
implies that these non-magnetic impurities are in the unitary 
limit [12]. Finally, in the EF → ED limit the broader linewidth 
and higher intensity of the experimental resonance peak than 
theoretical predictions [12,13] may imply the necessity to 
consider interacting Dirac fermions when the fermion density 
of states approaches zero. 

In summary, we have demonstrated scanning tunneling 
spectroscopic evidence of impurity resonances in the surface 
state of a strong topological insulator, Bi2Se3. The impurities 
are in the unitary limit and the spectral resonances are 
localized spatially (within a radius  2Å). The spectral weight 
of impurity resonances diverges as the Fermi energy 
approaches the Dirac point, and the rapid recovery of the 
surface state from non-magnetic impurities suggests robust 
topological protection against perturbations that preserve time-
reversal symmetry. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Dependence of non-magnetic impurity resonances on 

E  in a Dirac material: (a) Simulated STS on top of a non-

magnetic impurity for ( E /) = 0, 0.1, 0.3 and T = 0. The 
parameters used for calculations are similar to those in Ref. 
[13]: imp = 0, u0 = 0.00025, v0 = 0.05 and w0 = 0.0005. (b) 
Comparison of representative empirical impurity resonance 
spectra of the 60-QL and 7-QL samples. (c) Theoretical curves 
generated by using Eq. (3) and the parameters imp = 0 

(−0.002) and ( E /) = 0.01 (0.03) for the 60-QL (7-QL) 
samples. We have taken T = 77 K and  = 3.0 eV for creating 
the spectra in (c), and have used the same values of u0, v0 and 
w0 as those in (a). We further note that the absolute values of 
the tunneling conductance are shown in arbitrary units so that 
only the relative values of the tunneling conductance under 
varying conditions are physically significant. 
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